Exercise and cardiac health: physiological and molecular insights

The cardiac benefits of exercise have been recognized for centuries. Studies have undisputedly shown that regular exercise is beneficial for the cardiovascular system in young, old, healthy and diseased populations. For these reasons, physical activity has been recommended worldwide for cardiovascular disease prevention and treatment. Although the benefits of exercise are clear, understanding of the molecular triggers that orchestrate these effects remains incomplete and has been a topic of intense research in recent years. Here, we provide a comprehensive review of the cardiac effects of physical activity, beginning with a brief history of exercise in cardiovascular medicine and then discussing seminal work on the physiological effects of exercise in healthy, diseased and aged hearts. Later, we revisit pioneering work on the molecular mechanisms underlying the cardiac benefits of exercise, and we conclude with our view on the translational potential of this knowledge as a powerful platform for cardiovascular disease drug discovery.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics

Article Open access 01 September 2022

Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit

Article 06 July 2020

Molecular insights of exercise therapy in disease prevention and treatment

Article Open access 29 May 2024

References

  1. Ross, R. et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation134, e653–e699 (2016). ArticlePubMedGoogle Scholar
  2. Laukkanen, J. A. et al. Cardiovascular fitness as a predictor of mortality in men. Arch. Intern. Med.161, 825–831 (2001). ArticleCASPubMedGoogle Scholar
  3. Lavie, C. J. & Milani, R. V. Effects of cardiac rehabilitation, exercise training, and weight reduction on exercise capacity, coronary risk factors, behavioral characteristics, and quality of life in obese coronary patients. Am. J. Cardiol.79, 397–401 (1997). ArticleCASPubMedGoogle Scholar
  4. Marchionni, N. et al. Improved exercise tolerance and quality of life with cardiac rehabilitation of older patients after myocardial infarction: results of a randomized, controlled trial. Circulation107, 2201–2206 (2003). ArticlePubMedGoogle Scholar
  5. Roh, J., Rhee, J., Chaudhari, V. & Rosenzweig, A. The role of exercise in cardiac aging: from physiology to molecular mechanisms. Circ. Res.118, 279–295 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  6. Wisløff, U., Helgerud, J., Kemi, O. J. & Ellingsen, O. Intensity-controlled treadmill running in rats: VO2 max and cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol.280, H1301–H1310 (2001). ArticlePubMedGoogle Scholar
  7. Wisløff, U. et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation115, 3086–3094 (2007). ArticlePubMedGoogle Scholar
  8. Ramazzini, B. De morbis artificum diatriba [Diseases of workers]. 1713. Am. J. Public Health91, 1380–1382 (2001). ArticleCASPubMedPubMed CentralGoogle Scholar
  9. Hartley, P. H. & Llewellyn, G. F. Longevity of oarsmen. BMJ1, 657–662 (1939). ArticleCASPubMedPubMed CentralGoogle Scholar
  10. Morris, J. N., Heady, J. A., Raffle, P. A., Roberts, C. G. & Parks, J. W. Coronary heart-disease and physical activity of work. Lancet262, 1053–1057 (1953). ArticleCASPubMedGoogle Scholar
  11. Blair, S. N., Cheng, Y. & Holder, J. S. Is physical activity or physical fitness more important in defining health benefits? Med. Sci. Sports Exerc.33, S379–399 (2001). ArticleCASPubMedGoogle Scholar
  12. Dunn, A. L. et al. Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness: a randomized trial. J. Am. Med. Assoc.281, 327–334 (1999). ArticleCASGoogle Scholar
  13. Blair, S. N. et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. J. Am. Med. Assoc.276, 205–210 (1996). ArticleCASGoogle Scholar
  14. Lee, D. C. et al. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol.64, 472–481 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  15. Ortega, F. B., Ruiz, J. R., Castillo, M. J. & Sjostrom, M. Physical fitness in childhood and adolescence: a powerful marker of health. Int. J. Obes.32, 1–11 (2008). ArticleCASGoogle Scholar
  16. Lee, I. M., Hsieh, C. C. & Paffenbarger, R. S. Jr. Exercise intensity and longevity in men: The Harvard Alumni Health Study. J. Am. Med. Assoc.273, 1179–1184 (1995). ArticleCASGoogle Scholar
  17. Wei, M. et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. J. Am. Med. Assoc.282, 1547–1553 (1999). ArticleCASGoogle Scholar
  18. Saltin, B. et al. Response to exercise after bed rest and after training. Circulation38, 1–78 (1968). The article describes changes in VO2max and cardiac variables as a result of 20 days of bed rest followed by 8 weeks of exercise training. ArticleGoogle Scholar
  19. Shephard, R. J. et al. The maximum oxygen intake: an international reference standard of cardiorespiratory fitness. Bull. World Health Organ.38, 757–764 (1968). CASPubMedPubMed CentralGoogle Scholar
  20. Wagner, P. D. Determinants of maximal oxygen transport and utilization. Annu. Rev. Physiol.58, 21–50 (1996). ArticleCASPubMedGoogle Scholar
  21. Arbab-Zadeh, A. et al. Cardiac remodeling in response to 1 year of intensive endurance training. Circulation130, 2152–2161 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  22. Zavorsky, G. S. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering. Sports Med.29, 13–26 (2000). ArticleCASPubMedGoogle Scholar
  23. Pombo, J. F., Troy, B. L. & Russell, R. O. Jr. Left ventricular volumes and ejection fraction by echocardiography. Circulation43, 480–490 (1971). ArticleCASPubMedGoogle Scholar
  24. Morganroth, J., Maron, B. J., Henry, W. L. & Epstein, S. E. Comparative left ventricular dimensions in trained athletes. Ann. Intern. Med.82, 521–524 (1975). ArticleCASPubMedGoogle Scholar
  25. Fagard, R. H. Athlete’s heart: a meta-analysis of the echocardiographic experience. Int. J. Sports Med.17 (Suppl. 3), S140–S144 (1996). ArticlePubMedGoogle Scholar
  26. Spence, A. L. et al. A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J. Physiol. (Lond.)589, 5443–5452 (2011). ArticleCASGoogle Scholar
  27. McMullen, J. R. & Jennings, G. L. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin. Exp. Pharmacol. Physiol.34, 255–262 (2007). ArticleCASPubMedGoogle Scholar
  28. Lovic, D. et al. Left ventricular hypertrophy in athletes and hypertensive patients. J. Clin. Hypertens. (Greenwich)19, 413–417 (2017). ArticleGoogle Scholar
  29. Iwasaki, K., Zhang, R., Zuckerman, J. H. & Levine, B. D. Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J. Appl. Physiol.95, 1575–1583 (2003). ArticlePubMedGoogle Scholar
  30. Carter, J. B., Banister, E. W. & Blaber, A. P. Effect of endurance exercise on autonomic control of heart rate. Sports Med.33, 33–46 (2003). ArticlePubMedGoogle Scholar
  31. Sidhu, S. & Marine, J. E. Evaluating and managing bradycardia. Trends Cardiovasc. Med.30, 265–272 (2020). ArticlePubMedGoogle Scholar
  32. Saito, Y. et al. HCN4-overexpressing mouse embryonic stem cell-derived cardiomyocytes generate a new rapid rhythm in rats with bradycardia. Int. Heart J.59, 601–606 (2018). ArticleCASPubMedGoogle Scholar
  33. Nof, E., Antzelevitch, C. & Glikson, M. The contribution of HCN4 to normal sinus node function in humans and animal models. Pacing Clin. Electrophysiol.33, 100–106 (2010). ArticlePubMedGoogle Scholar
  34. Sneddon, J. F. & Camm, A. J. Sinus node disease: current concepts in diagnosis and therapy. Drugs44, 728–737 (1992). ArticleCASPubMedGoogle Scholar
  35. Levy, W. C. et al. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am. J. Cardiol.82, 1236–1241 (1998). ArticleCASPubMedGoogle Scholar
  36. Melanson, E. L. & Freedson, P. S. The effect of endurance training on resting heart rate variability in sedentary adult males. Eur. J. Appl. Physiol.85, 442–449 (2001). ArticleCASPubMedGoogle Scholar
  37. Carter, J. B., Banister, E. W. & Blaber, A. P. The effect of age and gender on heart rate variability after endurance training. Med. Sci. Sports Exerc.35, 1333–1340 (2003). ArticlePubMedGoogle Scholar
  38. Zingman, L. V. et al. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation. J. Mol. Cell. Cardiol.51, 72–81 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  39. Fletcher, P. J., Pfeffer, J. M., Pfeffer, M. A. & Braunwald, E. Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction: effects on systolic function. Circ. Res.49, 618–626 (1981). ArticleCASPubMedGoogle Scholar
  40. Matsuda, Y. et al. Importance of left atrial function in patients with myocardial infarction. Circulation67, 566–571 (1983). ArticleCASPubMedGoogle Scholar
  41. Tanaka, M. et al. Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br. Heart J.55, 575–581 (1986). ArticleCASPubMedPubMed CentralGoogle Scholar
  42. Konhilas, J. P. et al. Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circ. Res.98, 540–548 (2006). ArticleCASPubMedGoogle Scholar
  43. De Angelis, K. et al. Exercise training changes autonomic cardiovascular balance in mice. J. Appl. Physiol.96, 2174–2178 (2004). ArticlePubMedGoogle Scholar
  44. Wisløff, U., Loennechen, J. P., Currie, S., Smith, G. L. & Ellingsen, Ø. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca 2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc. Res.54, 162–174 (2002). ArticlePubMedGoogle Scholar
  45. Kemi, O. J. et al. Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats. J. Cell. Physiol.227, 20–26 (2012). ArticleCASPubMedGoogle Scholar
  46. Qin, R. et al. Exercise training reduces ventricular arrhythmias through restoring calcium handling and sympathetic tone in myocardial infarction mice. Physiol. Rep.7, e13972 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  47. Malmo, V. et al. Aerobic interval training reduces the burden of atrial fibrillation in the short term: a randomized trial. Circulation133, 466–473 (2016). ArticlePubMedGoogle Scholar
  48. Tjønna, A. E. et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation118, 346–354 (2008). ArticlePubMedPubMed CentralGoogle Scholar
  49. Hollekim-Strand, S. M. et al. High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: a randomized controlled trial. J. Am. Coll. Cardiol.64, 1758–1760 (2014). ArticlePubMedGoogle Scholar
  50. Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci.71, 549–574 (2014). ArticleCASPubMedGoogle Scholar
  51. Weeks, K. L. et al. Phosphoinositide 3-kinase p110α is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ. Heart Fail5, 523–534 (2012). ArticleCASPubMedGoogle Scholar
  52. Ma, X. et al. Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS ONE10, e0129971 (2015). ArticlePubMedPubMed CentralCASGoogle Scholar
  53. Puhl, S. L. et al. Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. Am. J. Physiol. Heart Circ. Physiol.309, H345–H359 (2015). ArticleCASPubMedGoogle Scholar
  54. Wilhelm, M. J. Long-term outcome following heart transplantation: current perspective. J. Thorac. Dis.7, 549–551 (2015). PubMedPubMed CentralGoogle Scholar
  55. Squires, R. W. Exercise training after cardiac transplantation. Med. Sci. Sports Exerc.23, 686–694 (1991). CASPubMedGoogle Scholar
  56. Tegtbur, U., Busse, M. W., Jung, K., Pethig, K. & Haverich, A. Time course of physical reconditioning during exercise rehabilitation late after heart transplantation. J. Heart Lung Transplant.24, 270–274 (2005). ArticlePubMedGoogle Scholar
  57. Karapolat, H. et al. Comparison of hospital-supervised exercise versus home-based exercise in patients after orthotopic heart transplantation: effects on functional capacity, quality of life, and psychological symptoms. Transplant. Proc.39, 1586–1588 (2007). ArticleCASPubMedGoogle Scholar
  58. Squires, R. W. et al. Partial normalization of the heart rate response to exercise after cardiac transplantation: frequency and relationship to exercise capacity. Mayo Clin. Proc.77, 1295–1300 (2002). ArticlePubMedGoogle Scholar
  59. Bowles, D. K. & Starnes, J. W. Exercise training improves metabolic response after ischemia in isolated working rat heart. J. Appl. Physiol.76, 1608–1614 (1994). ArticleCASPubMedGoogle Scholar
  60. French, J. P. et al. Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. FASEB J.22, 2862–2871 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  61. Powers, S. K. et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am. J. Physiol.275, R1468–R1477 (1998). CASPubMedGoogle Scholar
  62. Yamashita, N. et al. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J. Exp. Med.189, 1699–1706 (1999). ArticleCASPubMedPubMed CentralGoogle Scholar
  63. Ejlersen, H. et al. Prognostic impact of physical activity prior to myocardial infarction: Case fatality and subsequent risk of heart failure and death. Eur. J. Prev. Cardiol.24, 1112–1119 (2017). ArticlePubMedGoogle Scholar
  64. Peytz, N. C. et al. Physical activity and risk of instant and 28-day case-fatality in myocardial infarction. PLoS ONE14, e0217398 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  65. Brandfonbrener, M., Landowne, M. & Shock, N. W. Changes in cardiac output with age. Circulation12, 557–566 (1955). ArticleCASPubMedGoogle Scholar
  66. Lauer, M. S. et al. Impaired chronotropic response to exercise stress testing as a predictor of mortality. J. Am. Med. Assoc.281, 524–529 (1999). ArticleCASGoogle Scholar
  67. Leier, C. V., Heban, P. T., Huss, P., Bush, C. A. & Lewis, R. P. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathic heart failure. Circulation58, 466–475 (1978). ArticleCASPubMedGoogle Scholar
  68. Kappagoda, T. & Amsterdam, E. A. Exercise and heart failure in the elderly. Heart Fail. Rev.17, 635–662 (2012). ArticlePubMedGoogle Scholar
  69. Guarnieri, T., Filburn, C. R., Zitnik, G., Roth, G. S. & Lakatta, E. G. Contractile and biochemical correlates of beta-adrenergic stimulation of the aged heart. Am. J. Physiol.239, H501–H508 (1980). CASPubMedGoogle Scholar
  70. Zwiren, L. D., Freedson, P. S., Ward, A., Wilke, S. & Rippe, J. M. Estimation of VO2max: a comparative analysis of five exercise tests. Res. Q. Exerc. Sport62, 73–78 (1991). ArticleCASPubMedGoogle Scholar
  71. Lambert, M. I. & Noakes, T. D. Spontaneous running increases VO2max and running performance in rats. J. Appl. Phyisiol.68, 400–403 (1990). ArticleCASGoogle Scholar
  72. Leosco, D. et al. Exercise training and beta-blocker treatment ameliorate age-dependent impairment of beta-adrenergic receptor signaling and enhance cardiac responsiveness to adrenergic stimulation. Am. J. Physiol. Heart Circ. Physiol.293, H1596–H1603 (2007). ArticleCASPubMedGoogle Scholar
  73. Böhm, M. et al. Effects of exercise on myocardial adenylate cyclase and Gi alpha expression in senescence. Am. J. Physiol.264, H805–H814 (1993). PubMedGoogle Scholar
  74. Scarpace, P. J., Shu, Y. & Tumer, N. Influence of exercise training on myocardial beta-adrenergic signal transduction: differential regulation with age. J. Appl. Phyisiol.77, 737–741 (1994). ArticleCASGoogle Scholar
  75. Bers, D. M. Cardiac excitation-contraction coupling. Nature415, 198–205 (2002). ArticleCASPubMedGoogle Scholar
  76. Lim, C. C., Apstein, C. S., Colucci, W. S. & Liao, R. Impaired cell shortening and relengthening with increased pacing frequency are intrinsic to the senescent mouse cardiomyocyte. J. Mol. Cell. Cardiol.32, 2075–2082 (2000). ArticleCASPubMedGoogle Scholar
  77. Isenberg, G., Borschke, B. & Rueckschloss, U. Ca 2+ transients of cardiomyocytes from senescent mice peak late and decay slowly. Cell Calcium34, 271–280 (2003). ArticleCASPubMedGoogle Scholar
  78. Hamilton, S. & Terentyev, D. Altered intracellular calcium homeostasis and arrhythmogenesis in the aged heart. Int. J. Mol. Sci.20, E2386 (2019). ArticlePubMedCASGoogle Scholar
  79. Schmidt, U. et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca 2+ -ATPase. Circulation101, 790–796 (2000). ArticleCASPubMedGoogle Scholar
  80. Tate, C. A. et al. SERCA2a and mitochondrial cytochrome oxidase expression are increased in hearts of exercise-trained old rats. Am. J. Physiol.271, H68–H72 (1996). CASPubMedGoogle Scholar
  81. Iemitsu, M. et al. Exercise training improves cardiac function-related gene levels through thyroid hormone receptor signaling in aged rats. Am. J. Physiol. Heart Circ. Physiol.286, H1696–H1705 (2004). ArticleCASPubMedGoogle Scholar
  82. Biernacka, A. & Frangogiannis, N. G. Aging and cardiac fibrosis. Aging Dis.2, 158–173 (2011). PubMedPubMed CentralGoogle Scholar
  83. Olivetti, G., Melissari, M., Capasso, J. M. & Anversa, P. Cardiomyopathy of the aging human heart: myocyte loss and reactive cellular hypertrophy. Circ. Res.68, 1560–1568 (1991). ArticleCASPubMedGoogle Scholar
  84. Kwak, H. B. et al. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. FASEB J.25, 1106–1117 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  85. Thomas, D. P., Cotter, T. A., Li, X., McCormick, R. J. & Gosselin, L. E. Exercise training attenuates aging-associated increases in collagen and collagen crosslinking of the left but not the right ventricle in the rat. Eur. J. Appl. Physiol.85, 164–169 (2001). ArticleCASPubMedGoogle Scholar
  86. Arbab-Zadeh, A. et al. Effect of aging and physical activity on left ventricular compliance. Circulation110, 1799–1805 (2004). ArticlePubMedGoogle Scholar
  87. Bernardo, B. C., Weeks, K. L., Pretorius, L. & McMullen, J. R. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol. Ther.128, 191–227 (2010). ArticleCASPubMedGoogle Scholar
  88. Chesky, J. A., LaFollette, S., Travis, M. & Fortado, C. Effect of physical training on myocardial enzyme activities in aging rats. J. Appl. Physiol.55, 1349–1353 (1983). ArticleCASPubMedGoogle Scholar
  89. Short, K. R. et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl Acad. Sci. USA102, 5618–5623 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  90. Ames, B. N., Shigenaga, M. K. & Hagen, T. M. Mitochondrial decay in aging. Biochim. Biophys. Acta1271, 165–170 (1995). ArticlePubMedGoogle Scholar
  91. Escobales, N. et al. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats. J. Mol. Cell. Cardiol.77, 136–146 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  92. Hosseini, L., Vafaee, M. S. & Badalzadeh, R. Melatonin and nicotinamide mononucleotide attenuate myocardial ischemia/reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats. J. Cardiovasc. Pharmacol. Ther.25, 240–250 (2020). ArticleCASPubMedGoogle Scholar
  93. Boengler, K., Kosiol, M., Mayr, M., Schulz, R. & Rohrbach, S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J. Cachexia Sarcopenia Muscle8, 349–369 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  94. Judge, S. et al. Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am. J. Physiol. Regul. Integr. Comp. Physiol.289, R1564–R1572 (2005). ArticleCASPubMedGoogle Scholar
  95. Picard, M. et al. Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. J. Appl. Phyisiol.115, 1562–1571 (2013). ArticleCASGoogle Scholar
  96. Wang, H. et al. Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1α and Akt activation. Cell Physiol. Biochem.35, 2159–2168 (2015). ArticleCASPubMedGoogle Scholar
  97. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science324, 98–102 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  98. Laugwitz, K. L. et al. Postnatal isl1 + cardioblasts enter fully differentiated cardiomyocyte lineages. Nature433, 647–653 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  99. Lázár, E., Sadek, H. A. & Bergmann, O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur. Heart J.38, 2333–2342 (2017). ArticlePubMedPubMed CentralCASGoogle Scholar
  100. Vujic, A. et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat. Commun.9, 1659 (2018). ArticlePubMedPubMed CentralCASGoogle Scholar
  101. Mazzeo, R. S. & Tanaka, H. Exercise prescription for the elderly: current recommendations. Sports Med.31, 809–818 (2001). ArticleCASPubMedGoogle Scholar
  102. Singh, M. A. Exercise comes of age: rationale and recommendations for a geriatric exercise prescription. J. Gerontol. A Biol. Sci. Med. Sci.57, M262–M282 (2002). ArticlePubMedGoogle Scholar
  103. Gomes Neto, M. et al. High intensity interval training versus moderate intensity continuous training on exercise capacity and quality of life in patients with heart failure with reduced ejection fraction: a systematic review and meta-analysis. Int. J. Cardiol.261, 134–141 (2018). ArticlePubMedGoogle Scholar
  104. Rognmo, Ø. et al. Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation126, 1436–1440 (2012). ArticlePubMedGoogle Scholar
  105. Chien, K. R., Knowlton, K. U., Zhu, H. & Chien, S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J.5, 3037–3046 (1991). ArticleCASPubMedGoogle Scholar
  106. Strøm, C. C. et al. Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy. FEBS J.272, 2684–2695 (2005). ArticlePubMedCASGoogle Scholar
  107. Song, H. K., Hong, S. E., Kim, T. & Kim, D. H. Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS ONE7, e35552 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  108. Bernardo, B. C., Ooi, J. Y. Y., Weeks, K. L., Patterson, N. L. & McMullen, J. R. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol. Rev.98, 419–475 (2018). ArticleCASPubMedGoogle Scholar
  109. Alessio, H. M., Ansinelli, H., Threadgill, C. & Hagerman, A. E. Comparison of gene and protein expressions in rats residing in standard cages with those having access to an exercise wheel. BioMed. Res. Int.2014, 950516 (2014). ArticlePubMedPubMed CentralCASGoogle Scholar
  110. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell92, 829–839 (1998). ArticleCASPubMedGoogle Scholar
  111. Baar, K. et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J.16, 1879–1886 (2002). ArticleCASPubMedGoogle Scholar
  112. Botta, A. et al. Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts. PLoS ONE8, e70248 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  113. Arany, Z. et al. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab.1, 259–271 (2005). The article shows how PGC-1α functions as a major regulator of bioenergetics in cardiac muscle. ArticleCASPubMedGoogle Scholar
  114. Scarpulla, R. C., Vega, R. B. & Kelly, D. P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab.23, 459–466 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  115. Dufour, C. R. et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab.5, 345–356 (2007). ArticleCASPubMedGoogle Scholar
  116. Moreira, J. B. N. et al. Exercise reveals proline dehydrogenase as a potential target in heart failure. Prog. Cardiovasc. Dis.62, 193–202 (2019). ArticlePubMedGoogle Scholar
  117. Makarewich, C. A. et al. MOXI Is a mitochondrial micropeptide that enhances fatty acid β-oxidation. Cell Rep.23, 3701–3709 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  118. McMullen, J. R. et al. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl Acad. Sci. USA100, 12355–12360 (2003). This article shows that PI3K is required for the induction of physiological cardiac growth and is essential for maintaining contractile function in response to pathological stimuli. ArticleCASPubMedPubMed CentralGoogle Scholar
  119. McMullen, J. R. et al. Protective effects of exercise and phosphoinositide 3-kinase(p110α) signaling in dilated and hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. USA104, 612–617 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  120. DeBosch, B. et al. Akt1 is required for physiological cardiac growth. Circulation113, 2097–2104 (2006). ArticleCASPubMedGoogle Scholar
  121. Kim, J. et al. Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol. Endocrinol.22, 2531–2543 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  122. McMullen, J. R. et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110α) pathway. J. Biol. Chem.279, 4782–4793 (2004). ArticleCASPubMedGoogle Scholar
  123. Boudina, S. et al. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation119, 1272–1283 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  124. Noh, J. et al. Phosphoinositide dependent protein kinase 1 is required for exercise-induced cardiac hypertrophy but not the associated mitochondrial adaptations. J. Mol. Cell. Cardiol.89, 297–305 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  125. Kim, A. H., Khursigara, G., Sun, X., Franke, T. F. & Chao, M. V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell. Biol.21, 893–901 (2001). ArticleCASPubMedPubMed CentralGoogle Scholar
  126. Weeks, K. L., Bernardo, B. C., Ooi, J. Y. Y., Patterson, N. L. & McMullen, J. R. The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Adv. Exp. Med. Biol.1000, 187–210 (2017). ArticleCASPubMedGoogle Scholar
  127. Vega, R. B., Konhilas, J. P., Kelly, D. P. & Leinwand, L. A. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab.25, 1012–1026 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  128. Silva, G. J. J., Bye, A., El Azzouzi, H. & Wisløff, U. MicroRNAs as important regulators of exercise adaptation. Prog. Cardiovasc. Dis.60, 130–151 (2017). ArticlePubMedGoogle Scholar
  129. Shi, J. et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics7, 664–676 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  130. Carè, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med.13, 613–618 (2007). ArticlePubMedCASGoogle Scholar
  131. Liu, X. et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab.21, 584–595 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  132. Boström, P. et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell143, 1072–1083 (2010). ArticlePubMedPubMed CentralCASGoogle Scholar
  133. Bezzerides, V. J. et al. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury. JCI Insight1, e85904 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  134. Hamilton, K. L. et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic. Biol. Med.34, 800–809 (2003). ArticleCASPubMedGoogle Scholar
  135. Hutter, J. J. et al. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation94, 1408–1411 (1996). ArticleCASPubMedGoogle Scholar
  136. Tekin, D., Dursun, A. D. & Xi, L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol. Sin.31, 1085–1094 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  137. Brown, D. A. et al. Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J. Physiol. (Lond.)569, 913–924 (2005). ArticleCASGoogle Scholar
  138. Yao, Z. & Gross, G. J. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation89, 1769–1775 (1994). ArticleCASPubMedGoogle Scholar
  139. Wang, Z. et al. Irisin protects heart against ischemia-reperfusion injury through a SOD2-dependent mitochondria mechanism. J. Cardiovasc. Pharmacol.72, 259–269 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  140. Otaka, N. et al. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ. Res.123, 1326–1338 (2018). ArticleCASPubMedGoogle Scholar
  141. Tham, Y. K. et al. Lipidomic profiles of the heart and circulation in response to exercise versus cardiac pathology: a resource of potential biomarkers and drug targets. Cell Rep.24, 2757–2772 (2018). ArticleCASPubMedGoogle Scholar
  142. Guo, H., Isserlin, R., Emili, A. & Burniston, J. G. Exercise-responsive phosphoproteins in the heart. J. Mol. Cell. Cardiol.111, 61–68 (2017). ArticleCASPubMedGoogle Scholar
  143. Penny, W. F. & Hammond, H. K. Randomized clinical trials of gene transfer for heart failure with reduced ejection fraction. Hum. Gene Ther.28, 378–384 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  144. Narkar, V. A. et al. AMPK and PPARdelta agonists are exercise mimetics. Cell134, 405–415 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar

Acknowledgements

J.B.N.M. is supported by a grant from the Research Council of Norway (project 275714). M.W. is supported by grants from the KG Jebsen Center for Exercise in Medicine and the Liaison Committee between the Central Norway Regional Health Authority (RHA) and the Norwegian University of Science and Technology (NTNU).